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The process of nonstationary convective diffusion to a moving drop at low Re is examined.  Equations for 
the dimensionless diffusion flow Nu to the surface of the drop and for the length of  the nonstationary re-  
gion and the t ime required for the establishment of s teady-state  diffusion conditions are obtained. 

Levich [1] examined s teady-state  convective diffusion to a moving drop at Re < 1 and obtained an equation for 
the dimensionless diffusion flow to the surface of the drop 

Nu = ~ ~ + ~' (1) 

The veloci ty  u of the drop is ca lcula ted  from the Hadamard-Rybchinskii  formula, appl icat ion of which is restr ict-  

ed to the region Re < 1: 

2 ' - - p  ~ + ~ '  u = - -  g a  2. P (2) 
3 I~ 21~ + 3p/ 

Regarding the diffusion process as unsteady and assuming the phase contact  t ime  to be short, Higbie [2] obtained 

the mass transfer coeff icient  in the form 

le = 2 (DI:: t)'!=. 
(a) 

It is clear  from gq. (3) that at the in i t ia l  instant (t ~ 0) the mass transfer coeff icient  can be arbitrari ly large.  As 

the solution at the surface of the  drop is depleted (with increase in t), the density of the diffusion flow decreases. Then, 

convective mass transfer, which was not considered in deriving (3), begins to have a significant effect .  Higbie 's  theory 

does not permit  an es t imate  of the t ime  during which formula (3) still  gives re l iab le  prac t ica l  results. 

In this paper nonstationary mass transfer to a moving drop a t  low Re is examined and the t ime  required for the es- 

tablishment of s teady-s ta te  conditions is es t imated.  

The concentration distribution in the nonstationary laminar  boundary layer  of a spherical drop is given by the 
equation 

ac + v,. ac vo Oc o'v 
at + D .... r4) ,. r O0 Or s 

We use the Prandtl-Mises transformation [3] and as a new independent variable instead of r we introduce the stream 
function 

= Voay sin 2 0. 

The quantity v0 in (5) is the veloci ty  of the liquid on the drop surface, 

u 
u 0 ~-- 

2 

In the boundary layer  of the drop we have y ~ 0 and r " a + y m a, vo = v0 sin O. 

In view of the above, in the variables (t, ~) Eq. (4) takes the form 

(s) 

(6) 

ac Vo ao a2c 
Oi' + sin 0 : Da2v2  o sin 4 0 - -  

a ao aq~ 2 
(7) 
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We will seek the solution of this equation by the method of successive approximations and write 

o~ 

C = E C i ,  
1 

where C i is the solution of the diffusion equation in a stationary medium, and C z, C a . . . .  are certain small corrections 

When t -+ 0 the convective term in Eq. (7) can be omitted. We then obtain the following equation: 

The solution of Eq. 

0 2 C 1 OCi _ DaVy ~ sin~ 0 - -  (8) 
Ot 0 tp "- 

(8) satisfying the boundary conditions 

C~=Co, ~---,oo, 
C l = C * ,  ~ 0 ,  

C , = C  o, t = 0 ,  

is 

�9 U I "  B t  

2. (C O - -  C*) 

0 

e x p (-- z 2) dz + C*, 

where B = DaZvZ0 sin 40. 

Differentiating (9) with respect to 0 with @ = const, we find the derivative 

OCi 2(Co--C*) ~ cosO 

O0 1/  = aVo sin a0 
- -  exp (-- z~), 

(9) 

where z = qa/2V~. 

In the boundary layer of the drop $ ~ 0, and hence z ~ 0 and exp ( ' z  z) ~ 1. Thus we finally obtain 

OCi 2(Co-- C*) ,5 cos0 

O0 V 7 -  aVo s i # 0  
0o) 

The correction C 2 is given by the equation 

0C2 2(6"0 - -  C*) c o s 0  = Da2v ~ sin~ 0 02C2 
Ot a21/g-Dt ~ sin 2 0 0 4 - - - 7  

(11) 

In deriving this equation we neglected the term 

v0 sin 0 OC~ 02C2 
a 0 0 << Da2v~ sin4 0 - - 0 4 2  , 

which is valid when • --> 0. 

Transforming Eq. (11) by the Laplace method, we obtain an equation with total derivatives for the transform of 

the required function. The solution of this tast equation has the form 

C~ = ~.l exp aVo ~n~. 0 + ~0. exp - -av0sin  ~ 0 + 

COS 0 4 s--1,5. 
+. 2 (C O - -  C:':) a 2 sin 2 0 V-D-  

For the transform C2 we have the following boundary conditions: C2(0) = 0, Cz(oo) = 0. Using these, we find the 

constants of integration a 1 = ~ = 0. We finally obtain 

C2 = 2 (Co - -  C*) q) cos 0 s_t,2. (12) 
a 2 sin ~ 0 V D -  
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Using tables of transforms and their originals [4], we find the value of the function 

C ~ = 4  C o - - C *  I S  t cos___O0 

a * 1 /  ~ D  sin  g0~b' 
(13) 

Substituting r from gq. (5) in (9) and (13), we find 

(Co-C*) ~!2,~-~. c,  - 2 F--~ ~ ~ v  ( -  ~) dz + C"~', 
,J 0 

c~ = 4(Co-C*)  ~o , / 7 - y ~ o s 0 .  
a V r : D  

(14) 

By repeating the calcula t ion used to determine C z, we can find al l  the remaining corrections C i, and for even 

values i = 2n we obtain 

a ~ i - 3 . 5 . . . ( 4 n  - -  3) 

For odd values i = 2n + i we have 

c~, ,+ ,  = (Co-Co)- d- ]~ ~_g a 

[ 2,,,-, ] 
• 1 .3 .5 . . . (4n- -  1) (1 + c o s  20) y. 

cos 0 ] y. (15) 

(16) 

The total  mass flow to the surface of  the drop in t ime  t, measured from the start of the process (t = 0), is 

[ 2'~g2 " 0C1 ffff~2 si[10d0dt (17) 

Substituting in (17) the values of the derivatives 
k a y /  

find the dimensionless diffusion flow to the surface of the drop " 

2 Re,/,prV2(~___~__)2/ Nu = t / ~  ~ + ~' 'F (h), (18) 

where 

F(h) = h-V, 1 + --g 
1 

(2h)~n ] 
i . 3 . 5 . . . ( 4 n +  1) ' 

ut ka I h =  t~ H, H =  , N u =  , k ~  
+ t~' a D 4~ a~(Co - -  C*) 

Function F(h) in (18) is a correction for the unsteadiness of the process. When t ~ 0, Eq. (18) takes the form 

(19) 

Nu = eV2prv,H-V,. (20) 

By expanding the cri ter ia  in Eq. (20), we can easi ly verify that  this expression reduces to Higbie 's  formula (3). 

However, when t -~ co, Eq. (18) does not lead to Levich's s teady-s ta te  solution (1). This understandable, since 

when t --~ ~o the assumption of  a convect ive flow small  in comparison with the molecular  flow, an assumption on which 
the derivation of  Eq. (18) was based, becomes erroneous. It is obvious that  the order of  magni tude of  the character is t ic  
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t ime T at which the above assumption can no longer be regarded as valid must be found from Eq. 
co  

2 ~ (2h) 2n 
series -~- 1 . 3 . 5 . . .  (4n-+- I) 

1 

mass transfer. The equal i ty  

(19). In fact, the 

in the square brackets in Eq. (19) is a correction to Higbie 's  equation for convect ive 

1 = 2 ~ (2h) 2n 

1 

is the condition under which the convective flow becomes equal to the molecular  mass transfer, i. e . ,  may  serve for an 
es t imate  of the order of magni tude of T. 

In view of the rapid convergence of the series on the r ight-hand side of Eq. (21), we can restrict  ourselves to the 

first two terms of this series. The solution of  the equation obtained is h 2.1, whence T ~ 2.1 a ~ q- t~' - ' A more 
OF (h) u 

accurate  es t imate  of T can be obtained from the condition - -  - -  0, which gives the min imum of the function F(h). 
Oh 

As calculat ions show, the min imum value of function F(h) is reached when h ~ 1. When h = 1 is substited in Eq. (18), 

106 ReV2Pr*/={ ~ ) 1/2 
Nu = 4 5 1 / 7  - - - 7 - _  , / 

i . e . ,  a value approximate ly  2.9 t imes greater than that given by Levich's equation (1) for s teady-s ta te  mass transfer. 

The presence of  a min imum of function F(h) when h = 1 leads to a cessation of the regular decrease in Nu with in- 
crease in t and even to some increase in the intensity of the diffusionprocess (when h > 1). This is a result of the un- 

justified extension of the approximate  Eq. (18) into the region of  large t, where it is invalid.  Analysis shows that the 

contradiction noted is due to the assumption that the convective flow is small  in comparison with the molecu la r  flow, 
an assumption used in the derivation of Eq. (18). 

Oc v 9 Oc 
At large t the terms v r Or "+- - - r  - - 0 0 '  in the equation of convect ive diffusion [4] are no longer small ,  but the 

term 8c /0 t  is and may be dropped. In view of the foregoing, the order of magni tude of  the character is t ic  t ime  T can be 
determined from the condition h -- 1: 

T - -  a ~ + ~ '  (22) 
u t~ 

We can use gq. (22) to es t imate  the order of  the length of the region character ized by nonstationary diffusion: 

l ---~ a ( 1 + ~'/,~). (23) 

Substituting in (22) the values of u from formuta (2), we find 

3 2~ + .  3~, 1 

2 9' - -  9 g a  

(24) 

The results obtained can be used in the case of motion of drops at Re < 1 (this restriction is a result of  using the 
Hadamard-Rybchinskii  formula in the calculations).  Substituting in the inequal i ty  Re < 1 the ve loc i ty  of the drop from 

Eq. (2) and solving the expression obtained for the radius, we find 

3 ~ ( 2 ~  + 3 t J )  1 )v~. (25) 

a <  2 ~ + ~ '  gp(p' --~) 

Inequal i ty  (26) sets a l imi t  to the size of drops to which the results derived in this paper apply. 

In the case of bubbles moving in water we have a -~ 10 -z cm, u -- 10 -2 cm2/sec,  g' << g, and p' << p. 

Substituting these values in (28) and (24), we find Z - a - 10 -2 cm and T -~ 0.003 sec, from which i t  is c lear  that  

in the case of bubbles moving in water s teady-s ta te  diffusion sets in almost instantaneously. However, when p' -~ O and 
g' >> g [,5], the order of magni tude of the character is t ic  t ime  T and the length of  the nonstationary region l, as ca l cu -  

lations from Eqs. (28) and (24) show, may  be very great. 

When t < T the nonstationary convect ive diffusion process should follow Eq. (18). 
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NOTATION " 

k - mass transfer coeff icient ;  a - radius of drop; D -- coeff ic ient  of molecu la r  diffusion; v - k i n e m a t i c  viscosity 
of med ium;  ~t, g' - viscosity of m e d i u m  and substance of drop; Nu = k a / D  - Nusselt number;  Re -- u a / v - R e y n o l d s  num- 
ber; Pr = v / D  - Prandtl  number;  g - acce le ra t ion  of gravity; p, p' - density of  m e d i u m  and substance of drop; c - con-  
cent ra t ion  of distributed substance; v r, v 0 - radia l  and angular  ve loc i ty  components;  r - radius; 0 - angle  in spherical  
coordinates; y - coordinate  measured a long exterior normal  to surface of drop, 
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